12,378 research outputs found

    Effects of specimen resonances on acoustic-ultrasonic testing

    Get PDF
    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements

    Magnetic phase diagram of a frustrated ferrimagnetic ladder: Relation to the one-dimensional boson Hubbard model

    Full text link
    We study the magnetic phase diagram of two coupled mixed-spin (1,1/2)(1,{1/2}) Heisenberg chains as a function of the frustration parameter related to diagonal exchange couplings. The analysis is performed by using spin-wave series and exact numerical diagonalization techniques. The obtained phase diagram--containing the Luttinger liquid phase, the plateau phase with a magnetization per rung M=1/2M=1/2, and the fully polarized phase--is closely related to the generic (J/U,μ/U)(J/U,\mu/U) phase diagram of the one-dimensional boson Hubbard model.Comment: 4 pages, 2 figure

    Electronic structure of the molecule based magnet Cu PM(NO3)2 (H2O)2

    Full text link
    We present density functional calculations on the molecule based S=1/2 antiferromagnetic chain compound Cu PM(NO3)2 (H2O)2; PM = pyrimidine. The properties of the ferro- and antiferromagnetic state are investigated at the level of the local density approximation and with the hybrid functional B3LYP. Spin density maps illustrate the exchange path via the pyrimidine molecule which mediates the magnetism in the one-dimensional chain. The computed exchange coupling is antiferromagnetic and in reasonable agreement with the experiment. It is suggested that the antiferromagnetic coupling is due to the possibility of stronger delocalization of the charges on the nitrogen atoms, compared to the ferromagnetic case. In addition, computed isotropic and anisotropic hyperfine interaction parameters are compared with recent NMR experiments

    Orlov's Equivalence and Maximal Cohen-Macaulay Modules over the Cone of an Elliptic Curve

    Full text link
    We describe a method for doing computations with Orlov's equivalence between the bounded derived category of certain hypersurfaces and the stable category of graded matrix factorisations of the polynomials describing these hypersurfaces. In the case of a smooth elliptic curve over an algebraically closed field we describe the indecomposable graded matrix factorisations of rank one. Since every indecomposable Maximal Cohen-Macaulay module over the completion of a smooth cubic curve is gradable, we obtain explicit descriptions of all indecomposable rank one matrix factorisations of such potentials. Finally, we explain how to compute all indecomposable matrix factorisations of higher rank with the help of a computer algebra system.Comment: 26 page

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    Boston's Education Pipeline: A Report Card

    Get PDF
    Assesses the city's progress in creating an effective and equitable education pipeline from early childhood through college or postsecondary training. Examines demographic and outcome data and risk and prevention factors, and notes areas for improvement

    Exchange Interactions and High-Energy Spin States in Mn_12-acetate

    Full text link
    We perform inelastic neutron scattering measurements on the molecular nanomagnet Mn_12-acetate to measure the excitation spectrum up to 45meV (500K). We isolate magnetic excitations in two groups at 5-6.5meV (60-75K) and 8-10.5meV (95-120K), with higher levels appearing only at 27meV (310K) and 31meV (360K). From a detailed characterization of the transition peaks we show that all of the low-energy modes appear to be separate S = 9 excitations above the S = 10 ground state, with the peak at 27meV (310K) corresponding to the first S = 11 excitation. We consider a general model for the four exchange interaction parameters of the molecule. The static susceptibility is computed by high-temperature series expansion and the energy spectrum, matrix elements and ground-state spin configuration by exact diagonalization. The theoretical results are matched with experimental observation by inclusion of cluster anisotropy parameters, revealing strong constraints on possible parameter sets. We conclude that only a model with dominant exchange couplings J_1 ~ J_2 ~ 5.5meV (65K) and small couplings J_3 ~ J_4 ~ 0.6meV (7K) is consistent with the experimental data.Comment: 17 pages, 12 figure
    corecore